Reliable algorithms for computing minimal dynamic covers for descriptor systems

نویسنده

  • A. Varga
چکیده

Minimal dimension dynamic covers play an important role in solving the structural synthesis problems of minimum order functional observers or fault detectors, or in computing minimal order inverses or minimal degree solutions of rational equations. We propose numerically reliable algorithms to compute two basic types of minimal dimension dynamic covers for a linear system. The proposed approach is based on a special controllability staircase condensed form of a structured descriptor pair (A − λE, [B 1 , B 2 ]), which can be computed using exclusively orthogonal similarity transformations. Using such a condensed form minimal dimension covers and corresponding feedback/feedforward matrices can be easily computed. The overall algorithm has a low computational complexity and is provably numerically reliable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliable algorithms for computing minimal dynamic covers

Minimal dimension dynamic covers play an important role in solving the structural synthesis problems of minimum order functional observers or fault detectors, or in computing minimal order inverses or minimal degree solutions of rational equations. We propose numerically reliable algorithms to compute two basic types of minimal dimension dynamic covers for a linear system. The proposed approach...

متن کامل

Determining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form

A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...

متن کامل

On computing minimal realizations of periodic descriptor systems

We propose computationally efficient and numerically reliable algorithms to compute minimal realizations of periodic descriptor systems. The main computational tool employed for the structural analysis of periodic descriptor systems (i.e., reachability and observability) is the orthogonal reduction of periodic matrix pairs to Kronecker-like forms. Specializations of a general reduction algorith...

متن کامل

On computing nullspace bases – a fault detection perspective

We discuss computationally efficient and numerically reliable algorithms to compute minimal proper nullspace bases of a rational or polynomial matrix. The underlying main computational tool is the orthogonal reduction to a Kronecker-like form of the system matrix of an equivalent descriptor system realization. A new algorithm is proposed to compute a simple minimal proper nullspace basis, start...

متن کامل

Computation of least order solutions of linear rational equations A . Varga

We propose a numerically reliable approach for computing solutions of least McMillan order of linear equations with rational matrix coefficients. The main computational ingredients are the orthogonal reduction of the associated system matrix pencil to a certain Kronecker-like staircase form and the solution of a minimal dynamic cover design problem. For these computations we discuss numerically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004